Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Positively finitely related profinite groups (1611.07543v1)

Published 22 Nov 2016 in math.GR

Abstract: We define and study the class of positively finitely related (PFR) profinite groups. Positive finite relatedness is a probabilistic property of profinite groups which provides a first step to defining higher finiteness properties of profinite groups which generalize the positively finitely generated groups introduced by Avinoam Mann. We prove many asymptotic characterisations of PFR groups, for instance we show the following: a finitely presented profinite group is PFR if and only if it has at most exponential representation growth, uniformly over finite fields (in other words: the completed group algebra has polynomial maximal ideal growth). From these characterisations we deduce several structural results on PFR profinite groups.

Summary

We haven't generated a summary for this paper yet.