Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
11 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
40 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
37 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Memory Lens: How Much Memory Does an Agent Use? (1611.06928v1)

Published 21 Nov 2016 in cs.AI and stat.ML

Abstract: We propose a new method to study the internal memory used by reinforcement learning policies. We estimate the amount of relevant past information by estimating mutual information between behavior histories and the current action of an agent. We perform this estimation in the passive setting, that is, we do not intervene but merely observe the natural behavior of the agent. Moreover, we provide a theoretical justification for our approach by showing that it yields an implementation-independent lower bound on the minimal memory capacity of any agent that implement the observed policy. We demonstrate our approach by estimating the use of memory of DQN policies on concatenated Atari frames, demonstrating sharply different use of memory across 49 games. The study of memory as information that flows from the past to the current action opens avenues to understand and improve successful reinforcement learning algorithms.

Citations (3)

Summary

We haven't generated a summary for this paper yet.