Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 22 tok/s
GPT-5 High 36 tok/s Pro
GPT-4o 91 tok/s
GPT OSS 120B 463 tok/s Pro
Kimi K2 213 tok/s Pro
2000 character limit reached

A scenario-based framework for supply planning under uncertainty: stochastic programming versus robust optimization approaches (1611.06514v1)

Published 20 Nov 2016 in math.OC

Abstract: In this paper we analyze the effect of two modelling approaches for supply planning problems under uncertainty: two-stage stochastic programming (SP) and robust optimization (RO). The comparison between the two approaches is performed through a scenario-based framework methodology, which can be applied to any optimization problem affected by uncertainty. For SP we compute the minimum expected cost based on the specific probability distribution of the uncertain parameters related to a set of scenarios. For RO we consider static approaches where random parameters belong to box or ellipsoidal uncertainty sets in compliance with the data used to generate SP scenarios. Dynamic approaches for RO, via the concept of adjustable robust counterpart, are also considered. The efficiency of the methodology has been illustrated for a supply planning problem to optimize vehicle-renting and procurement transportation activities involving uncertainty on demands and on buying costs for extra-vehicles. Numerical experiments through the scenario-based framework allow a fair comparison in real case instances. Advantages and disadvantages of RO and SP are discussed.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.