Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
36 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
37 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
4 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Localized Coulomb Descriptors for the Gaussian Approximation Potential (1611.05126v2)

Published 16 Nov 2016 in stat.ML and physics.chem-ph

Abstract: We introduce a novel class of localized atomic environment representations, based upon the Coulomb matrix. By combining these functions with the Gaussian approximation potential approach, we present LC-GAP, a new system for generating atomic potentials through ML. Tests on the QM7, QM7b and GDB9 biomolecular datasets demonstrate that potentials created with LC-GAP can successfully predict atomization energies for molecules larger than those used for training to chemical accuracy, and can (in the case of QM7b) also be used to predict a range of other atomic properties with accuracy in line with the recent literature. As the best-performing representation has only linear dimensionality in the number of atoms in a local atomic environment, this represents an improvement both in prediction accuracy and computational cost when considered against similar Coulomb matrix-based methods.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.