Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

AdversariaLib: An Open-source Library for the Security Evaluation of Machine Learning Algorithms Under Attack (1611.04786v1)

Published 15 Nov 2016 in cs.CR and cs.LG

Abstract: We present AdversariaLib, an open-source python library for the security evaluation of ML against carefully-targeted attacks. It supports the implementation of several attacks proposed thus far in the literature of adversarial learning, allows for the evaluation of a wide range of ML algorithms, runs on multiple platforms, and has multi-processing enabled. The library has a modular architecture that makes it easy to use and to extend by implementing novel attacks and countermeasures. It relies on other widely-used open-source ML libraries, including scikit-learn and FANN. Classification algorithms are implemented and optimized in C/C++, allowing for a fast evaluation of the simulated attacks. The package is distributed under the GNU General Public License v3, and it is available for download at http://sourceforge.net/projects/adversarialib.

Citations (4)

Summary

We haven't generated a summary for this paper yet.