Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On numerical approximation schemes for expectation propagation (1611.04416v1)

Published 14 Nov 2016 in stat.CO, cs.LG, and stat.ML

Abstract: Several numerical approximation strategies for the expectation-propagation algorithm are studied in the context of large-scale learning: the Laplace method, a faster variant of it, Gaussian quadrature, and a deterministic version of variational sampling (i.e., combining quadrature with variational approximation). Experiments in training linear binary classifiers show that the expectation-propagation algorithm converges best using variational sampling, while it also converges well using Laplace-style methods with smooth factors but tends to be unstable with non-differentiable ones. Gaussian quadrature yields unstable behavior or convergence to a sub-optimal solution in most experiments.

Summary

We haven't generated a summary for this paper yet.