Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Collision-based Testers are Optimal for Uniformity and Closeness (1611.03579v1)

Published 11 Nov 2016 in cs.DS, cs.IT, cs.LG, math.IT, math.ST, and stat.TH

Abstract: We study the fundamental problems of (i) uniformity testing of a discrete distribution, and (ii) closeness testing between two discrete distributions with bounded $\ell_2$-norm. These problems have been extensively studied in distribution testing and sample-optimal estimators are known for them~\cite{Paninski:08, CDVV14, VV14, DKN:15}. In this work, we show that the original collision-based testers proposed for these problems ~\cite{GRdist:00, BFR+:00} are sample-optimal, up to constant factors. Previous analyses showed sample complexity upper bounds for these testers that are optimal as a function of the domain size $n$, but suboptimal by polynomial factors in the error parameter $\epsilon$. Our main contribution is a new tight analysis establishing that these collision-based testers are information-theoretically optimal, up to constant factors, both in the dependence on $n$ and in the dependence on $\epsilon$.

Citations (66)

Summary

We haven't generated a summary for this paper yet.