Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Existence of solutions to degenerate parabolic problems with two weights via the Hardy inequality (1611.02125v1)

Published 7 Nov 2016 in math.AP

Abstract: The paper concentrates on the application of the following Hardy inequality \begin{equation*} \int_\Omega \ |\xi(x)|p \omega_{1 }(x)dx\le \int_\Omega |\nabla \xi(x)|p\omega_{2 }(x)dx, \end{equation*} to the proof of existence of weak solutions to degenerate parabolic problems of the type \begin{equation*} \left{\begin{array}{ll} u_t-div(\omega_2(x)|\nabla u|{p-2} \nabla u )= \lambda W(x) |u|{p-2}u& x\in\Omega, u(x,0)=f(x)& x\in\Omega, u(x,t)=0& x\in\partial\Omega,\ t>0,\ \end{array}\right. \end{equation*} on an open subset $\Omega\subseteq\mathbb{R}n$, not necessarily bounded, where [W(x)\leq \min{m,\omega_1(x)},\qquad m\in\mathbb{R}_+.]

Summary

We haven't generated a summary for this paper yet.