Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning to Draw Samples: With Application to Amortized MLE for Generative Adversarial Learning (1611.01722v2)

Published 6 Nov 2016 in stat.ML and cs.LG

Abstract: We propose a simple algorithm to train stochastic neural networks to draw samples from given target distributions for probabilistic inference. Our method is based on iteratively adjusting the neural network parameters so that the output changes along a Stein variational gradient that maximumly decreases the KL divergence with the target distribution. Our method works for any target distribution specified by their unnormalized density function, and can train any black-box architectures that are differentiable in terms of the parameters we want to adapt. As an application of our method, we propose an amortized MLE algorithm for training deep energy model, where a neural sampler is adaptively trained to approximate the likelihood function. Our method mimics an adversarial game between the deep energy model and the neural sampler, and obtains realistic-looking images competitive with the state-of-the-art results.

Citations (117)

Summary

We haven't generated a summary for this paper yet.