Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Portmanteau Tests for ARMA Models with Infinite Variance (1611.01360v1)

Published 4 Nov 2016 in math.ST and stat.TH

Abstract: Autoregressive and moving-average (ARMA) models with stable Paretian errors is one of the most studied models for time series with infinite variance. Estimation methods for these models have been studied by many researchers but the problem of diagnostic checking fitted models has not been addressed. In this paper, we develop portmanteau tests for checking randomness of a time series with infinite variance and as a diagnostic tool for checking model adequacy of fitted ARMA models. It is assumed that least-squares or an asymptotically equivalent estimation method, such as Gaussian maximum likelihood in the case of AR models, is used. And it is assumed that the distribution of the innovations is IID stable Paretian. It is seen via simulation that the proposed portmanteau tests do not converge well to the corresponding limiting distributions for practical series length so a Monte-Carlo test is suggested. Simulation experiments show that the proposed test procedure works effectively. Two illustrative applications to actual data are provided to demonstrate that an incorrect conclusion may result if the usual portmanteau test based on the finite variance assumption is used.

Summary

We haven't generated a summary for this paper yet.