Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
123 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
4 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Orthogonal samples for estimators in time series (1611.00398v1)

Published 1 Nov 2016 in stat.ME

Abstract: Inference for statistics of a stationary time series often involve nuisance parameters and sampling distributions that are difficult to estimate. In this paper, we propose the method of orthogonal samples, which can be used to address some of these issues. For a broad class of statistics, an orthogonal sample is constructed through a slight modification of the original statistic, such that it shares similar distributional properties as the centralised statistic of interest. We use the orthogonal sample to estimate nuisance parameters of weighted average periodogram estimators and $L_{2}$-type spectral statistics. Further, the orthogonal sample is utilized to estimate the finite sampling distribution of various test statistics under the null hypothesis. The proposed method is simple and computationally fast to implement. The viability of the method is illustrated with various simulations.

Summary

We haven't generated a summary for this paper yet.