Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 96 TPS
Gemini 2.5 Pro 50 TPS Pro
GPT-5 Medium 31 TPS
GPT-5 High 29 TPS Pro
GPT-4o 96 TPS
GPT OSS 120B 475 TPS Pro
Kimi K2 194 TPS Pro
2000 character limit reached

Checking for prior-data conflict using prior to posterior divergences (1611.00113v3)

Published 1 Nov 2016 in stat.ME

Abstract: When using complex Bayesian models to combine information, the checking for consistency of the information being combined is good statistical practice. Here a new method is developed for detecting prior-data conflicts in Bayesian models based on comparing the observed value of a prior to posterior divergence to its distribution under the prior predictive distribution for the data. The divergence measure used in our model check is a measure of how much beliefs have changed from prior to posterior, and can be thought of as a measure of the overall size of a relative belief function. It is shown that the proposed method is intuitive, has desirable properties, can be extended to hierarchical settings, and is related asymptotically to Jeffreys' and reference prior distributions. In the case where calculations are difficult, the use of variational approximations as a way of relieving the computational burden is suggested. The methods are compared in a number of examples with an alternative but closely related approach in the literature based on the prior predictive distribution of a minimal sufficient statistic.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.