Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Closed-form REML estimators and sample size determination for mixed effects models for repeated measures under monotone missingness (1611.00087v2)

Published 1 Nov 2016 in stat.ME

Abstract: We derive the closed-form restricted maximum likelihood (REML) estimator and Kenward-Roger's variance estimator for fixed effects in the mixed effects model for repeated measures (MMRM) when the missing data pattern is monotone. As an important application of the analytic result, we present the formula for calculating the power of treatment comparison using the Wald t test with the Kenward-Roger adjusted variance estimate in MMRM. It allows adjustment for baseline covariates without the need to specify the covariate distribution in randomized trials. A simple two-step procedure is proposed to determine the sample size needed to achieve the targeted power. The proposed method performs well for both normal and moderately nonnormal data even in small samples (n = 20) in simulations. An anti-depressant trial is analyzed for illustrative purposes.

Summary

We haven't generated a summary for this paper yet.