Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Joint Large-Scale Motion Estimation and Image Reconstruction (1610.09908v1)

Published 31 Oct 2016 in cs.CV and math.OC

Abstract: This article describes the implementation of the joint motion estimation and image reconstruction framework presented by Burger, Dirks and Sch\"onlieb and extends this framework to large-scale motion between consecutive image frames. The variational framework uses displacements between consecutive frames based on the optical flow approach to improve the image reconstruction quality on the one hand and the motion estimation quality on the other. The energy functional consists of a data-fidelity term with a general operator that connects the input sequence to the solution, it has a total variation term for the image sequence and is connected to the underlying flow using an optical flow term. Additional spatial regularity for the flow is modeled by a total variation regularizer for both components of the flow. The numerical minimization is performed in an alternating manner using primal-dual techniques. The resulting schemes are presented as pseudo-code together with a short numerical evaluation.

Citations (5)

Summary

We haven't generated a summary for this paper yet.