Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Extremal behaviour of hitting a cone by correlated Brownian motion with drift (1610.09387v2)

Published 28 Oct 2016 in math.PR

Abstract: This paper derives an exact asymptotic expression for [ \mathbb{P}{\mathbf{x}_u}{\exists{t\ge0} \mathbf{X}(t)- \boldsymbol{\mu}t\in \mathcal{U} }, \ \ {\rm as}\ \ u\to\infty, ] where $\mathbf{X}(t)=(X_1(t),\ldots,X_d(t))\top,t\ge0$ is a correlated $d$-dimensional Brownian motion starting at the point $\mathbf{x}u=-\boldsymbol{\alpha}u$ with $\boldsymbol{\alpha}\in \mathbb{R}d$, $\boldsymbol{\mu} \in \mathbb{R}d$ and $\mathcal{U}=\prod{i=1}d [0,\infty)$. The derived asymptotics depends on the solution of an underlying multidimensional quadratic optimization problem with constraints, which leads in some cases to dimension-reduction of the considered problem. Complementary, we study asymptotic distribution of the conditional first passage time to $\mathcal{U}$, which depends on the dimension-reduction phenomena.

Summary

We haven't generated a summary for this paper yet.