Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Khovanov homology in characteristic two and involutive monopole Floer homology (1610.08866v2)

Published 27 Oct 2016 in math.GT and math.QA

Abstract: We study the conjugation involution in Seiberg-Witten theory in the context of the Ozsv\'ath-Szab\'o and Bloom's spectral sequence for the branched double cover of a link $L$ in $S3$. We prove that there exists a spectral sequence of $\mathbb{F}[Q]/Q2$-modules (where $Q$ has degree $-1$) which converges to $\widetilde{\mathit{HMI}}_*(\Sigma(L))$, an involutive version of the monopole Floer homology of the branched double cover, and whose $E2$-page is a version of Bar Natan's characteristic two Khovanov homology of the mirror of $L$. We conjecture that an analogous result holds in the setting of $\mathrm{Pin}(2)$-monopole Floer homology.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)