Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

LP Rounding and Combinatorial Algorithms for Minimizing Active and Busy Time (1610.08154v1)

Published 26 Oct 2016 in cs.DS

Abstract: We consider fundamental scheduling problems motivated by energy issues. In this framework, we are given a set of jobs, each with a release time, deadline and required processing length. The jobs need to be scheduled on a machine so that at most g jobs are active at any given time. The duration for which a machine is active (i.e., "on") is referred to as its active time. The goal is to find a feasible schedule for all jobs, minimizing the total active time. When preemption is allowed at integer time points, we show that a minimal feasible schedule already yields a 3-approximation (and this bound is tight) and we further improve this to a 2-approximation via LP rounding techniques. Our second contribution is for the non-preemptive version of this problem. However, since even asking if a feasible schedule on one machine exists is NP-hard, we allow for an unbounded number of virtual machines, each having capacity of g. This problem is known as the busy time problem in the literature and a 4-approximation is known for this problem. We develop a new combinatorial algorithm that gives a 3-approximation. Furthermore, we consider the preemptive busy time problem, giving a simple and exact greedy algorithm when unbounded parallelism is allowed, i.e., g is unbounded. For arbitrary g, this yields an algorithm that is 2-approximate.

Citations (35)

Summary

We haven't generated a summary for this paper yet.