Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
55 tokens/sec
2000 character limit reached

Local coderivatives and approximation of Hodge Laplace problems (1610.07954v2)

Published 25 Oct 2016 in math.NA

Abstract: The standard mixed finite element approximations of Hodge Laplace problems associated with the de Rham complex are based on proper discrete subcomplexes. As a consequence, the exterior derivatives, which are local operators, are computed exactly. However, the approximations of the associated coderivatives are nonlocal. In fact, this nonlocal property is an inherent consequence of the mixed formulation of these methods, and can be argued to be an undesired effect of these schemes. As a consequence, it has been argued, at least in special settings, that more local methods may have improved properties. In the present paper, we construct such methods by relying on a careful balance between the choice of finite element spaces, degrees of freedom, and numerical integration rules. Furthermore, we establish key convergence estimates based on a standard approach of variational crimes.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.