Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dynamic portfolio optimization with liquidity cost and market impact: a simulation-and-regression approach (1610.07694v3)

Published 25 Oct 2016 in q-fin.PM, q-fin.CP, and q-fin.TR

Abstract: We present a simulation-and-regression method for solving dynamic portfolio allocation problems in the presence of general transaction costs, liquidity costs and market impacts. This method extends the classical least squares Monte Carlo algorithm to incorporate switching costs, corresponding to transaction costs and transient liquidity costs, as well as multiple endogenous state variables, namely the portfolio value and the asset prices subject to permanent market impacts. To do so, we improve the accuracy of the control randomization approach in the case of discrete controls, and propose a global iteration procedure to further improve the allocation estimates. We validate our numerical method by solving a realistic cash-and-stock portfolio with a power-law liquidity model. We quantify the certainty equivalent losses associated with ignoring liquidity effects, and illustrate how our dynamic allocation protects the investor's capital under illiquid market conditions. Lastly, we analyze, under different liquidity conditions, the sensitivities of certainty equivalent returns and optimal allocations with respect to trading volume, stock price volatility, initial investment amount, risk-aversion level and investment horizon.

Summary

We haven't generated a summary for this paper yet.