Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
99 tokens/sec
Gemini 2.5 Pro Premium
56 tokens/sec
GPT-5 Medium
26 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
106 tokens/sec
DeepSeek R1 via Azure Premium
99 tokens/sec
GPT OSS 120B via Groq Premium
507 tokens/sec
Kimi K2 via Groq Premium
213 tokens/sec
2000 character limit reached

Quasistatic normal-compliance contact problem of visco-elastic bodies with Coulomb friction implemented by QP and SGBEM (1610.06777v1)

Published 21 Oct 2016 in math.NA

Abstract: The quasistatic normal-compliance contact problem of isotropic homogeneous linear visco-elastic bodies with Coulomb friction at small strains in Kelvin-Voigt rheology is considered. The discretization is made by a semi-implicit formula in time and the Symmetric Galerkin Boundary Element Method (SGBEM) in space, assuming that the ratio of the viscosity and elasticity moduli is a given relaxation-time coefficient. The obtained recursive minimization problem, formulated only on the contact boundary, has a nonsmooth cost function. If the normal compliance responds linearly and the 2D problems are considered, then the cost function is piecewise-quadratic, which after a certain transformation gets the quadratic programming (QP) structure. However, it would lead to second-order cone programming in 3D problems. Finally, several computational tests are presented and analysed, with additional discussion on numerical stability and convergence of the involved approximated Poincar\'e-Steklov operators.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.