Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lexicon Integrated CNN Models with Attention for Sentiment Analysis (1610.06272v2)

Published 20 Oct 2016 in cs.CL

Abstract: With the advent of word embeddings, lexicons are no longer fully utilized for sentiment analysis although they still provide important features in the traditional setting. This paper introduces a novel approach to sentiment analysis that integrates lexicon embeddings and an attention mechanism into Convolutional Neural Networks. Our approach performs separate convolutions for word and lexicon embeddings and provides a global view of the document using attention. Our models are experimented on both the SemEval'16 Task 4 dataset and the Stanford Sentiment Treebank, and show comparative or better results against the existing state-of-the-art systems. Our analysis shows that lexicon embeddings allow to build high-performing models with much smaller word embeddings, and the attention mechanism effectively dims out noisy words for sentiment analysis.

Citations (113)

Summary

We haven't generated a summary for this paper yet.