Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DeepGraph: Graph Structure Predicts Network Growth (1610.06251v1)

Published 20 Oct 2016 in cs.SI and cs.LG

Abstract: The topological (or graph) structures of real-world networks are known to be predictive of multiple dynamic properties of the networks. Conventionally, a graph structure is represented using an adjacency matrix or a set of hand-crafted structural features. These representations either fail to highlight local and global properties of the graph or suffer from a severe loss of structural information. There lacks an effective graph representation, which hinges the realization of the predictive power of network structures. In this study, we propose to learn the represention of a graph, or the topological structure of a network, through a deep learning model. This end-to-end prediction model, named DeepGraph, takes the input of the raw adjacency matrix of a real-world network and outputs a prediction of the growth of the network. The adjacency matrix is first represented using a graph descriptor based on the heat kernel signature, which is then passed through a multi-column, multi-resolution convolutional neural network. Extensive experiments on five large collections of real-world networks demonstrate that the proposed prediction model significantly improves the effectiveness of existing methods, including linear or nonlinear regressors that use hand-crafted features, graph kernels, and competing deep learning methods.

Citations (17)

Summary

We haven't generated a summary for this paper yet.