Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fully Dynamic Algorithm for Top-$k$ Densest Subgraphs (1610.05897v2)

Published 19 Oct 2016 in cs.DS

Abstract: Given a large graph, the densest-subgraph problem asks to find a subgraph with maximum average degree. When considering the top-$k$ version of this problem, a na\"ive solution is to iteratively find the densest subgraph and remove it in each iteration. However, such a solution is impractical due to high processing cost. The problem is further complicated when dealing with dynamic graphs, since adding or removing an edge requires re-running the algorithm. In this paper, we study the top-$k$ densest-subgraph problem in the sliding-window model and propose an efficient fully-dynamic algorithm. The input of our algorithm consists of an edge stream, and the goal is to find the node-disjoint subgraphs that maximize the sum of their densities. In contrast to existing state-of-the-art solutions that require iterating over the entire graph upon any update, our algorithm profits from the observation that updates only affect a limited region of the graph. Therefore, the top-$k$ densest subgraphs are maintained by only applying local updates. We provide a theoretical analysis of the proposed algorithm and show empirically that the algorithm often generates denser subgraphs than state-of-the-art competitors. Experiments show an improvement in efficiency of up to five orders of magnitude compared to state-of-the-art solutions.

Citations (26)

Summary

We haven't generated a summary for this paper yet.