Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust Wasserstein Profile Inference and Applications to Machine Learning (1610.05627v4)

Published 18 Oct 2016 in math.ST and stat.TH

Abstract: We show that several machine learning estimators, including square-root LASSO (Least Absolute Shrinkage and Selection) and regularized logistic regression can be represented as solutions to distributionally robust optimization (DRO) problems. The associated uncertainty regions are based on suitably defined Wasserstein distances. Hence, our representations allow us to view regularization as a result of introducing an artificial adversary that perturbs the empirical distribution to account for out-of-sample effects in loss estimation. In addition, we introduce RWPI (Robust Wasserstein Profile Inference), a novel inference methodology which extends the use of methods inspired by Empirical Likelihood to the setting of optimal transport costs (of which Wasserstein distances are a particular case). We use RWPI to show how to optimally select the size of uncertainty regions, and as a consequence, we are able to choose regularization parameters for these machine learning estimators without the use of cross validation. Numerical experiments are also given to validate our theoretical findings.

Summary

We haven't generated a summary for this paper yet.