Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimizing Open-Ended Crowdsourcing: The Next Frontier in Crowdsourced Data Management (1610.05377v1)

Published 17 Oct 2016 in cs.HC

Abstract: Crowdsourcing is the primary means to generate training data at scale, and when combined with sophisticated machine learning algorithms, crowdsourcing is an enabler for a variety of emergent automated applications impacting all spheres of our lives. This paper surveys the emerging field of formally reasoning about and optimizing open-ended crowdsourcing, a popular and crucially important, but severely understudied class of crowdsourcing---the next frontier in crowdsourced data management. The underlying challenges include distilling the right answer when none of the workers agree with each other, teasing apart the various perspectives adopted by workers when answering tasks, and effectively selecting between the many open-ended operators appropriate for a problem. We describe the approaches that we've found to be effective for open-ended crowdsourcing, drawing from our experiences in this space.

Citations (11)

Summary

We haven't generated a summary for this paper yet.