Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Interactive Attention for Neural Machine Translation (1610.05011v1)

Published 17 Oct 2016 in cs.CL

Abstract: Conventional attention-based Neural Machine Translation (NMT) conducts dynamic alignment in generating the target sentence. By repeatedly reading the representation of source sentence, which keeps fixed after generated by the encoder (Bahdanau et al., 2015), the attention mechanism has greatly enhanced state-of-the-art NMT. In this paper, we propose a new attention mechanism, called INTERACTIVE ATTENTION, which models the interaction between the decoder and the representation of source sentence during translation by both reading and writing operations. INTERACTIVE ATTENTION can keep track of the interaction history and therefore improve the translation performance. Experiments on NIST Chinese-English translation task show that INTERACTIVE ATTENTION can achieve significant improvements over both the previous attention-based NMT baseline and some state-of-the-art variants of attention-based NMT (i.e., coverage models (Tu et al., 2016)). And neural machine translator with our INTERACTIVE ATTENTION can outperform the open source attention-based NMT system Groundhog by 4.22 BLEU points and the open source phrase-based system Moses by 3.94 BLEU points averagely on multiple test sets.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Fandong Meng (174 papers)
  2. Zhengdong Lu (35 papers)
  3. Hang Li (277 papers)
  4. Qun Liu (230 papers)
Citations (75)