Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Grüss type inequalities for positive linear maps on $C^*$-algebras (1610.03868v1)

Published 12 Oct 2016 in math.OA and math.FA

Abstract: Let $\mathcal{A}$ and $\mathcal{B}$ be two unital $C*$-algebras and let for $C\in\mathcal{A},\ \Gamma_C={\gamma \in \mathbb{C} : |C-\gamma I|=\inf_{\alpha\in \mathbb{C}} |C-\alpha I|}$. We prove that if $\Phi :\mathcal{A} \longrightarrow \mathcal{B}$ is a unital positive linear map, then \begin{eqnarray*} \big|\Phi(AB)-\Phi(A)\Phi(B)\big| \leq \big|\Phi(|A*-\zeta I|2)\big|\frac{1}{2} \big[\Phi(|B-\xi I|2)\big]\frac{1}{2} \end{eqnarray*} for all $A,B\in\mathcal{A}, \zeta \in \Gamma_A$ and $\xi\in\Gamma_B.$\ In addition, we show that if $(\mathcal{A},\tau)$ is a noncommutative probability space and $T \in \mathcal{A}$ is a density operator, then \begin{eqnarray*} \ \ \big|\tau(TAB)-\tau(TA)\tau(TB)\big|\leq |A-\zeta I|_p|B-\xi I|_q|T|_r \ \ (p,q\geq 4, r\geq 2) \end{eqnarray*} and \begin{eqnarray*} \big|\tau(TAB)-\tau(TA)\tau(TB)\big|\leq |A-\zeta I|_p|B-\xi I|_q|T| \ \ \ \ (p,q\geq 2)\ \ \ \ \ \end{eqnarray*} for every $A,B \in \mathcal{A}$ and $\zeta \in \Gamma_A,\xi \in \Gamma_B$. Our results generalize the corresponding results for matrices to operators on spaces of arbitrary dimension.

Summary

We haven't generated a summary for this paper yet.