Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Variational Canonical Correlation Analysis (1610.03454v3)

Published 11 Oct 2016 in cs.LG

Abstract: We present deep variational canonical correlation analysis (VCCA), a deep multi-view learning model that extends the latent variable model interpretation of linear CCA to nonlinear observation models parameterized by deep neural networks. We derive variational lower bounds of the data likelihood by parameterizing the posterior probability of the latent variables from the view that is available at test time. We also propose a variant of VCCA called VCCA-private that can, in addition to the "common variables" underlying both views, extract the "private variables" within each view, and disentangles the shared and private information for multi-view data without hard supervision. Experimental results on real-world datasets show that our methods are competitive across domains.

Citations (137)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com