Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 33 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 92 tok/s
GPT OSS 120B 441 tok/s Pro
Kimi K2 227 tok/s Pro
2000 character limit reached

Self-reflective model predictive control (1610.03228v2)

Published 11 Oct 2016 in math.OC

Abstract: This paper proposes a novel control scheme, named self-reflective model predictive control, which takes its own limitations in the presence of process noise and measurement errors into account. In contrast to existing output-feedback MPC and persistently exciting MPC controllers, the proposed self-reflective MPC controller does not only propagate a matrix-valued state forward in time in order to predict the variance of future state-estimates, but it also propagates a matrix-valued adjoint state backward in time. This adjoint state is used by the controller to compute and minimize a second order approximation of its own expected loss of control performance in the presence of random process noise and inexact state estimates. The properties of the proposed controller are illustrated with a small but non-trivial case study.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube