Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ensemble Validation: Selectivity has a Price, but Variety is Free (1610.01234v3)

Published 4 Oct 2016 in stat.ML and cs.LG

Abstract: Suppose some classifiers are selected from a set of hypothesis classifiers to form an equally-weighted ensemble that selects a member classifier at random for each input example. Then the ensemble has an error bound consisting of the average error bound for the member classifiers, a term for selectivity that varies from zero (if all hypothesis classifiers are selected) to a standard uniform error bound (if only a single classifier is selected), and small constants. There is no penalty for using a richer hypothesis set if the same fraction of the hypothesis classifiers are selected for the ensemble.

Citations (7)

Summary

We haven't generated a summary for this paper yet.