Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Complexity of Knapsack in Graph Groups (1610.00373v2)

Published 3 Oct 2016 in math.GR and cs.CC

Abstract: Myasnikov et al. have introduced the knapsack problem for arbitrary finitely generated groups. In previous work, the authors proved that for each graph group, the knapsack problem can be solved in $\mathsf{NP}$. Here, we determine the exact complexity of the problem for every graph group. While the problem is $\mathsf{TC}0$-complete for complete graphs, it is $\mathsf{LogCFL}$-complete for each (non-complete) transitive forest. For every remaining graph, the problem is $\mathsf{NP}$-complete.

Citations (2)

Summary

We haven't generated a summary for this paper yet.