Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sparsity-driven weighted ensemble classifier (1610.00270v3)

Published 2 Oct 2016 in stat.ML and cs.LG

Abstract: In this study, a novel sparsity-driven weighted ensemble classifier (SDWEC) that improves classification accuracy and minimizes the number of classifiers is proposed. Using pre-trained classifiers, an ensemble in which base classifiers votes according to assigned weights is formed. These assigned weights directly affect classifier accuracy. In the proposed method, ensemble weights finding problem is modeled as a cost function with the following terms: (a) a data fidelity term aiming to decrease misclassification rate, (b) a sparsity term aiming to decrease the number of classifiers, and (c) a non-negativity constraint on the weights of the classifiers. As the proposed cost function is non-convex thus hard to solve, convex relaxation techniques and novel approximations are employed to obtain a numerically efficient solution. Sparsity term of cost function allows trade-off between accuracy and testing time when needed. The efficiency of SDWEC was tested on 11 datasets and compared with the state-of-the art classifier ensemble methods. The results show that SDWEC provides better or similar accuracy levels using fewer classifiers and reduces testing time for ensemble.

Citations (7)

Summary

We haven't generated a summary for this paper yet.