Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Computing the joint distribution of the total tree length across loci in populations with variable size (1609.08880v5)

Published 28 Sep 2016 in q-bio.PE, math.AP, and math.PR

Abstract: In recent years, a number of methods have been developed to infer complex demographic histories, especially historical population size changes, from genomic sequence data. Coalescent Hidden Markov Models have proven to be particularly useful for this type of inference. Due to the Markovian structure of these models, an essential building block is the joint distribution of local genealogical trees, or statistics of these genealogies, at two neighboring loci in populations of variable size. Here, we present a novel method to compute the marginal and the joint distribution of the total length of the genealogical trees at two loci separated by at most one recombination event for samples of arbitrary size. To our knowledge, no method to compute these distributions has been presented in the literature to date. We show that they can be obtained from the solution of certain hyperbolic systems of partial differential equations. We present a numerical algorithm, based on the method of characteristics, that can be used to efficiently and accurately solve these systems and compute the marginal and the joint distributions. We demonstrate its utility to study the properties of the joint distribution. Our flexible method can be straightforwardly extended to handle an arbitrary fixed number of recombination events, to include the distributions of other statistics of the genealogies as well, and can also be applied in structured populations.

Summary

We haven't generated a summary for this paper yet.