Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A very fast iterative algorithm for TV-regularized image reconstruction with applications to low-dose and few-view CT (1609.06041v1)

Published 20 Sep 2016 in physics.med-ph, cs.CV, and math.NA

Abstract: This paper concerns iterative reconstruction for low-dose and few-view CT by minimizing a data-fidelity term regularized with the Total Variation (TV) penalty. We propose a very fast iterative algorithm to solve this problem. The algorithm derivation is outlined as follows. First, the original minimization problem is reformulated into the saddle point (primal-dual) problem by using the Lagrangian duality, to which we apply the first-order primal-dual iterative methods. Second, we precondition the iteration formula using the ramp flter of Filtered Backprojection (FBP) reconstruction algorithm in such a way that the problem solution is not altered. The resulting algorithm resembles the structure of so-called iterative FBP algorithm, and it converges to the exact minimizer of cost function very fast.

Citations (17)

Summary

We haven't generated a summary for this paper yet.