Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Machine-learned approximations to Density Functional Theory Hamiltonians (1609.05737v2)

Published 19 Sep 2016 in cond-mat.mtrl-sci

Abstract: Large scale Density Functional Theory (DFT) based electronic structure calculations are highly time consuming and scale poorly with system size. While semi-empirical approximations to DFT result in a reduction in computational time versus ab initio DFT, creating such approximations involves significant manual intervention and is highly inefficient for high-throughput electronic structure screening calculations. In this letter, we propose the use of machine-learning for fast and accurate prediction of DFT Hamiltonians. Using suitable representations of atomic neighborhoods and Kernel Ridge Regression, we show that an accurate and transferable prediction of DFT Hamiltonians for a variety of material environments can be achieved. Electronic transmission spectra computed using predicted Hamiltonians compare accurately with their DFT counterparts. The method is independent of the specifics of the DFT basis or material system used and can easily be automated and scaled for predicting Hamiltonians of any material system of interest.

Summary

We haven't generated a summary for this paper yet.