Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Comparison of the Categories of Motives defined by Voevodsky and Nori (1609.05516v1)

Published 18 Sep 2016 in math.AG

Abstract: In this thesis we compare V. Voevodsky's geometric motives to the derived category of M. Nori's abelian category of mixed motives by constructing a triangulated tensor functor between them. It will be compatible with the Betti realizations on both sides. We allow an arbitrary noetherian ring of coefficients, but require it to be a field or a Dedekind domain for the tensor structure on derived Nori motives to exist. There are three key ingredients: we present a theory of Nisnevich covers on finite acyclic diagrams of finite correspondences, explain, following D. Rydh, how to interpret finite correspondences as multivalued morphisms and elaborate on M. Nori's cohomological cell structures. For the first two, we will be working over an arbitrary regular scheme, but the last one will require that we restrict ourselves to a subfield of the complex numbers. On the way we also show that smooth commutative group schemes over a normal base automatically admit transfers, generalizing a result by M. Spiess and T. Szamuely.

Summary

We haven't generated a summary for this paper yet.