2000 character limit reached
Social Learning over Weakly-Connected Graphs (1609.03703v2)
Published 13 Sep 2016 in cs.SI and cs.MA
Abstract: In this paper, we study diffusion social learning over weakly-connected graphs. We show that the asymmetric flow of information hinders the learning abilities of certain agents regardless of their local observations. Under some circumstances that we clarify in this work, a scenario of total influence (or "mind-control") arises where a set of influential agents ends up shaping the beliefs of non-influential agents. We derive useful closed-form expressions that characterize this influence, and which can be used to motivate design problems to control it. We provide simulation examples to illustrate the results.