Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Finite-sample and asymptotic analysis of generalization ability with an application to penalized regression (1609.03344v2)

Published 12 Sep 2016 in stat.ML, cs.LG, math.ST, q-fin.EC, stat.CO, and stat.TH

Abstract: In this paper, we study the performance of extremum estimators from the perspective of generalization ability (GA): the ability of a model to predict outcomes in new samples from the same population. By adapting the classical concentration inequalities, we derive upper bounds on the empirical out-of-sample prediction errors as a function of the in-sample errors, in-sample data size, heaviness in the tails of the error distribution, and model complexity. We show that the error bounds may be used for tuning key estimation hyper-parameters, such as the number of folds $K$ in cross-validation. We also show how $K$ affects the bias-variance trade-off for cross-validation. We demonstrate that the $\mathcal{L}_2$-norm difference between penalized and the corresponding un-penalized regression estimates is directly explained by the GA of the estimates and the GA of empirical moment conditions. Lastly, we prove that all penalized regression estimates are $L_2$-consistent for both the $n \geqslant p$ and the $n < p$ cases. Simulations are used to demonstrate key results. Keywords: generalization ability, upper bound of generalization error, penalized regression, cross-validation, bias-variance trade-off, $\mathcal{L}_2$ difference between penalized and unpenalized regression, lasso, high-dimensional data.

Summary

We haven't generated a summary for this paper yet.