Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Less than a Single Pass: Stochastically Controlled Stochastic Gradient Method (1609.03261v3)

Published 12 Sep 2016 in math.OC, cs.DS, cs.LG, and stat.ML

Abstract: We develop and analyze a procedure for gradient-based optimization that we refer to as stochastically controlled stochastic gradient (SCSG). As a member of the SVRG family of algorithms, SCSG makes use of gradient estimates at two scales, with the number of updates at the faster scale being governed by a geometric random variable. Unlike most existing algorithms in this family, both the computation cost and the communication cost of SCSG do not necessarily scale linearly with the sample size $n$; indeed, these costs are independent of $n$ when the target accuracy is low. An experimental evaluation on real datasets confirms the effectiveness of SCSG.

Citations (89)

Summary

We haven't generated a summary for this paper yet.