Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bio-Inspired Filter Banks for SSVEP-based Brain-Computer Interfaces (1609.03224v1)

Published 11 Sep 2016 in cs.HC and q-bio.NC

Abstract: Brain-computer interfaces (BCI) have the potential to play a vital role in future healthcare technologies by providing an alternative way of communication and control. More specifically, steady-state visual evoked potential (SSVEP) based BCIs have the advantage of higher accuracy and higher information transfer rate (ITR). In order to fully exploit the capabilities of such devices, it is necessary to understand the features of SSVEP and design the system considering its biological characteristics. This paper introduces bio-inspired filter banks (BIFB) for a novel SSVEP frequency detection method. It is known that SSVEP response to a flickering visual stimulus is frequency selective and gets weaker as the frequency of the stimuli increases. In the proposed approach, the gain and bandwidth of the filters are designed and tuned based on these characteristics while also incorporating harmonic SSVEP responses. This method not only improves the accuracy but also increases the available number of commands by allowing the use of stimuli frequencies elicit weak SSVEP responses. The BIFB method achieved reliable performance when tested on datasets available online and compared with two well-known SSVEP frequency detection methods, power spectral density analysis (PSDA) and canonical correlation analysis (CCA). The results show the potential of bio-inspired design which will be extended to include further SSVEP characteristic (e.g. time-domain waveform) for future SSVEP based BCIs.

Citations (12)

Summary

We haven't generated a summary for this paper yet.