Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Object Tracking via Dynamic Feature Selection Processes (1609.01958v1)

Published 7 Sep 2016 in cs.CV

Abstract: DFST proposes an optimized visual tracking algorithm based on the real-time selection of locally and temporally discriminative features. A feature selection mechanism is embedded in the Adaptive colour Names (CN) tracking system that adaptively selects the top-ranked discriminative features for tracking. DFST provides a significant gain in accuracy and precision allowing the use of a dynamic set of features that results in an increased system flexibility. DFST is based on the unsupervised method "Infinite Feature Selection" (Inf-FS), which ranks features according with their "redundancy" without using class labels. By using a fast online algorithm for learning dictionaries the size of the box is adapted during the processing. At each update, we use multiple examples around the target (at different positions and scales). DFST also improved the CN by adding micro-shift at the predicted position and bounding box adaptation.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.