Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal State Estimation with Measurements Corrupted by Laplace Noise (1609.00115v1)

Published 1 Sep 2016 in math.OC and cs.SY

Abstract: Optimal state estimation for linear discrete-time systems is considered. Motivated by the literature on differential privacy, the measurements are assumed to be corrupted by Laplace noise. The optimal least mean square error estimate of the state is approximated using a randomized method. The method relies on that the Laplace noise can be rewritten as Gaussian noise scaled by Rayleigh random variable. The probability of the event that the distance between the approximation and the best estimate is smaller than a constant is determined as function of the number of parallel Kalman filters that is used in the randomized method. This estimator is then compared with the optimal linear estimator, the maximum a posteriori (MAP) estimate of the state, and the particle filter.

Citations (14)

Summary

We haven't generated a summary for this paper yet.