Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Measuring the Quality of Exercises (1608.09005v1)

Published 31 Aug 2016 in cs.CV

Abstract: This work explores the problem of exercise quality measurement since it is essential for effective management of diseases like cerebral palsy (CP). This work examines the assessment of quality of large amplitude movement (LAM) exercises designed to treat CP in an automated fashion. Exercise data was collected by trained participants to generate ideal examples to use as a positive samples for machine learning. Following that, subjects were asked to deliberately make subtle errors during the exercise, such as restricting movements, as is commonly seen in cases of patients suffering from CP. The quality measurement problem was then posed as a classification to determine whether an example exercise was either "good" or "bad". Popular machine learning techniques for classification, including support vector machines (SVM), single and doublelayered neural networks (NN), boosted decision trees, and dynamic time warping (DTW), were compared. The AdaBoosted tree performed best with an accuracy of 94.68% demonstrating the feasibility of assessing exercise quality.

Citations (36)

Summary

We haven't generated a summary for this paper yet.