Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient parameter sensitivity computation for spatially-extended reaction networks (1608.08174v2)

Published 29 Aug 2016 in q-bio.QM

Abstract: Reaction-diffusion models are widely used to study spatially-extended chemical reaction systems. In order to understand how the dynamics of a reaction-diffusion model are affected by changes in its input parameters, efficient methods for computing parametric sensitivities are required. In this work, we focus on stochastic models of spatially-extended chemical reaction systems that involve partitioning the computational domain into voxels. Parametric sensitivities are often calculated using Monte Carlo techniques that are typically computationally expensive; however, variance reduction techniques can decrease the number of Monte Carlo simulations required. By exploiting the characteristic dynamics of spatially-extended reaction networks, we are able to adapt existing finite difference schemes to robustly estimate parametric sensitivities in a spatially-extended network. We show that algorithmic performance depends on the dynamics of the given network and the choice of summary statistics. We then describe a hybrid technique that dynamically chooses the most appropriate simulation method for the network of interest. Our method is tested for functionality and accuracy in a range of different scenarios.

Summary

We haven't generated a summary for this paper yet.