Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cast and Self Shadow Segmentation in Video Sequences using Interval based Eigen Value Representation (1608.07807v1)

Published 28 Aug 2016 in cs.CV

Abstract: Tracking of motion objects in the surveillance videos is useful for the monitoring and analysis. The performance of the surveillance system will deteriorate when shadows are detected as moving objects. Therefore, shadow detection and elimination usually benefits the next stages. To overcome this issue, a method for detection and elimination of shadows is proposed. This paper presents a method for segmenting moving objects in video sequences based on determining the Euclidian distance between two pixels considering neighborhood values in temporal domain. Further, a method that segments cast and self shadows in video sequences by computing the Eigen values for the neighborhood of each pixel is proposed. The dual-map for cast and self shadow pixels is represented based on the interval of Eigen values. The proposed methods are tested on the benchmark IEEE CHANGE DETECTION 2014 dataset.

Citations (1)

Summary

We haven't generated a summary for this paper yet.