Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Functional time series forecasting with dynamic updating: An application to intraday particulate matter concentration (1608.07029v1)

Published 25 Aug 2016 in stat.CO and stat.AP

Abstract: Environmental data often take the form of a collection of curves observed sequentially over time. An example of this includes daily pollution measurement curves describing the concentration of a particulate matter in ambient air. These curves can be viewed as a time series of functions observed at equally spaced intervals over a dense grid. The nature of high-dimensional data poses challenges from a statistical aspect, due to the so-called `curse of dimensionality', but it also poses opportunities to analyze a rich source of information to better understand dynamic changes at short time intervals. Statistical methods are introduced and compared for forecasting one-day-ahead intraday concentrations of particulate matter; as new data are sequentially observed, dynamic updating methods are proposed to update point and interval forecasts to achieve better accuracy. These forecasting methods are validated through an empirical study of half-hourly concentrations of airborne particulate matter in Graz, Austria.

Summary

We haven't generated a summary for this paper yet.