Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convergence of Quotients of AF Algebras in Quantum Propinquity by Convergence of Ideals (1608.07016v3)

Published 25 Aug 2016 in math.OA and math.FA

Abstract: We introduce a topology on the ideal space of inductive limits of C*-algebras built by a topological inverse limit of the Fell topologies on the C*-algebras of the given inductive sequence and we produce conditions for when this topology agrees with the Fell topology of the inductive limit. With this topology, we impart criteria for when convergence of ideals of an AF algebra can provide convergence of quotients in the quantum Gromov-Hausdorff propinquity building off previous joint work with Latremoliere. These findings bestow a continuous map from a class of ideals of the Boca-Mundici AF algebra equipped with various topologies including Jacobson and Fell topologies to the space of quotients equipped with the propinquity topology.

Summary

We haven't generated a summary for this paper yet.