Low Algorithmic Complexity Entropy-deceiving Graphs (1608.05972v8)
Abstract: In estimating the complexity of objects, in particular of graphs, it is common practice to rely on graph- and information-theoretic measures. Here, using integer sequences with properties such as Borel normality, we explain how these measures are not independent of the way in which an object, such as a graph, can be described or observed. From observations that can reconstruct the same graph and are therefore essentially translations of the same description, we will see that when applying a computable measure such as Shannon Entropy, not only is it necessary to pre-select a feature of interest where there is one, and to make an arbitrary selection where there is not, but also that more general properties, such as the causal likelihood of a graph as a measure (opposed to randomness), can be largely misrepresented by computable measures such as Entropy and Entropy rate. We introduce recursive and non-recursive (uncomputable) graphs and graph constructions based on these integer sequences, whose different lossless descriptions have disparate Entropy values, thereby enabling the study and exploration of a measure's range of applications and demonstrating the weaknesses of computable measures of complexity.