Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deconstructing the Welch Equation Using $p$-adic Methods (1608.05880v1)

Published 21 Aug 2016 in math.NT and cs.CR

Abstract: The Welch map $x \rightarrow g{x-1+c}$ is similar to the discrete exponential map $x \rightarrow gx$, which is used in many cryptographic applications including the ElGamal signature scheme. This paper analyzes the number of solutions to the Welch equation: $g{x-1+c} \equiv x \pmod{pe}$ where $p$ is a prime and $g$ is a unit modulo $p$, and looks at other patterns of the equation that could possibly be exploited in a similar cryptographic system. Since the equation is modulo $pe$, where $p$ is a prime number, $p$-adic methods of analysis are used in counting the number of solutions modulo $pe$. These methods include: $p$-adic interpolation, Hensel's lemma and Chinese Remainder Theorem.

Citations (2)

Summary

We haven't generated a summary for this paper yet.