Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Detecting Vanishing Points using Global Image Context in a Non-Manhattan World (1608.05684v1)

Published 19 Aug 2016 in cs.CV

Abstract: We propose a novel method for detecting horizontal vanishing points and the zenith vanishing point in man-made environments. The dominant trend in existing methods is to first find candidate vanishing points, then remove outliers by enforcing mutual orthogonality. Our method reverses this process: we propose a set of horizon line candidates and score each based on the vanishing points it contains. A key element of our approach is the use of global image context, extracted with a deep convolutional network, to constrain the set of candidates under consideration. Our method does not make a Manhattan-world assumption and can operate effectively on scenes with only a single horizontal vanishing point. We evaluate our approach on three benchmark datasets and achieve state-of-the-art performance on each. In addition, our approach is significantly faster than the previous best method.

Citations (100)

Summary

We haven't generated a summary for this paper yet.